Nox enzymes and oxidative stress in atherosclerosis.
نویسندگان
چکیده
Oxidative stress is a major contributor to the etiology of all severe vascular pathologies, such as atherosclerosis. NADPH oxidases (Nox) are a class of multicomponent enzymes whose unique function is the generation of reactive oxygen species (ROS) in the vascular cells and in circulating immune cells interacting with blood vessels. Physiological production of Nox-derived ROS contributes to the maintenance of vascular homeostasis. In pathological states, hyperactivity of Nox induces oxidative stress. Nox-derived ROS interact and stimulate other enzymatic sources of oxygen/nitrogen reactive intermediates, and amplify the initial response to insults. In atherosclerosis, Nox-induced lipid peroxidation is highly deleterious and expands the free radical reactions initially produced by activated Nox. Therefore, understanding the molecular mechanisms of Nox regulation, vascular and subcellular compartmentalization of ROS production and its subsequent biological significance, may lead to a focused and effective anti-oxidative stress therapy. We present here, recent advances in Nox regulation in the vasculature and discuss novel potential intrinsic feedback mechanisms and current and pharmacological perspectives to target Nox, which may have an impact in vascular health and disease.
منابع مشابه
Oxyradical Stress, Endocannabinoids, and Atherosclerosis
Atherosclerosis is responsible for most cardiovascular disease (CVD) and is caused by several factors including hypertension, hypercholesterolemia, and chronic inflammation. Oxidants and electrophiles have roles in the pathophysiology of atherosclerosis and the concentrations of these reactive molecules are an important factor in disease initiation and progression. Overactive NADPH oxidase (Nox...
متن کاملResveratrol attenuates oxLDL-stimulated NADPH oxidase activity and protects endothelial cells from oxidative functional damages.
trans-Resveratrol (RSV) has been shown to have cardioprotective effect during ischemia-reperfusion through reactive oxygen species (ROS)-scavenging activity. Elevated ROS has been implicated in the initiation and progression of atherosclerosis. The nicotinamide adenine dinucleotide phosphate oxidase (NOX) is a major source of vascular ROS formation. In the present study, we show that exposure o...
متن کاملNADPH Oxidase: A Potential Target for Treatment of Stroke
Stroke is the third leading cause of death in industrialized nations. Oxidative stress is involved in the pathogenesis of stroke, and excessive generation of reactive oxygen species (ROS) by mitochondria is thought to be the main cause of oxidative stress. NADPH oxidase (NOX) enzymes have recently been identified and studied as important producers of ROS in brain tissues after stroke. Several r...
متن کاملC/EBP transcription factors regulate NADPH oxidase in human aortic smooth muscle cells
In atherosclerosis, oxidative stress-induced vascular smooth muscle cells (SMCs) dysfunction is partially mediated by up-regulated NADPH oxidase (Nox); the mechanisms of enzyme regulation are not entirely defined. CCAAT/enhancer-binding proteins (C/EBP) regulate cellular proliferation and differentiation, and the expression of many inflammatory and immune genes. We aimed at elucidating the role...
متن کاملIn Vivo Effects of Quercetin in Association with Moderate Exercise Training in Improving Streptozotocin-Induced Aortic Tissue Injuries.
BACKGROUND Diabetes mellitus (DM) is a chronic endocrine-metabolic disorder associated with endothelial dysfunction. Hyperglycemia, dyslipidemia and abnormal nitric oxide-mediated vasodilatation are the major causal factors in the development of endothelial dysfunction in DM. The prevention of endothelial dysfunction may be a first target against the appearance of atherosclerosis and cardiovasc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Frontiers in bioscience
دوره 4 شماره
صفحات -
تاریخ انتشار 2012